首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44084篇
  免费   1783篇
  国内免费   1366篇
化学   24045篇
晶体学   642篇
力学   2048篇
综合类   79篇
数学   4405篇
物理学   16014篇
  2022年   486篇
  2021年   622篇
  2020年   750篇
  2019年   754篇
  2018年   832篇
  2017年   796篇
  2016年   1110篇
  2015年   838篇
  2014年   1203篇
  2013年   2232篇
  2012年   2210篇
  2011年   2629篇
  2010年   1895篇
  2009年   1821篇
  2008年   2095篇
  2007年   1952篇
  2006年   1795篇
  2005年   1538篇
  2004年   1388篇
  2003年   1196篇
  2002年   1107篇
  2001年   1494篇
  2000年   1093篇
  1999年   889篇
  1998年   677篇
  1997年   661篇
  1996年   566篇
  1995年   560篇
  1994年   525篇
  1993年   456篇
  1992年   508篇
  1991年   504篇
  1990年   487篇
  1989年   461篇
  1988年   462篇
  1987年   443篇
  1986年   393篇
  1985年   465篇
  1984年   479篇
  1983年   351篇
  1982年   390篇
  1981年   380篇
  1980年   315篇
  1979年   396篇
  1978年   375篇
  1977年   394篇
  1976年   390篇
  1975年   339篇
  1974年   317篇
  1973年   333篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Annals of Operations Research - The main purpose of this study was to explore the impact of peace dividends on global changes in national productivity. First, this study assessed changes in...  相似文献   
22.
One important prerequisite for the fabrication of molecular functional device strongly relies on the understanding the conducting behaviors of the metal-molecule-metal junction that can respond to an external stimulus. The model Lewis basic molecule 4,4′-(pyridine-3,5-diyl)dibenzonitrile (DBP), which can react with Lewis acid and protic acid, was synthesized. Then, the molecular conducting behavior of DBP, DBP-B(C6F5)3, and DBP-TfOH (DBP-B(C6F5)3, and DBP-TfOH were produced by Lewis acid and protonic acid treatment of DBP) was researched and compared. Given that their identical physical paths for DBP, DBP-B(C6F5)3, and DBP-TfOH to sustain charge transport, our results indicate that modifying the molecular electronic structure, even not directly changing the conductive physical backbone, can tune the charge transporting ability by nearly one order of magnitude. Furthermore, the addition of another Lewis base triethylamine (of stronger alkaline than DBP), to Lewis acid-base pair reverts the electrical properties back to that of a single DBP junction, that is constructive to propose a useful but simple strategy for the design and construction of reversible and controllable molecular device based on pyridine derived molecule.  相似文献   
23.
钱冬杰 《中国物理 B》2022,31(1):10503-010503
Synchronization is a process that describes the coherent dynamics of a large ensemble of interacting units.The study of explosive synchronization transition attracts considerable attention.Here,I report the explosive transition within the framework of a mobile network,while each oscillator is controlled by global-order parameters of the system.Using numerical simulation,I find that the explosive synchronization(ES)transition behavior can be controlled by simply adjusting the fraction of controlled oscillators.The influences of some parameters on explosive synchronization are studied.Moreover,due to the presence of the positive feedback mechanism,I prevent the occurrence of the synchronization of continuous-phase transition and make phase transition of the system a first-order phase transition accompanied by a hysteresis loop.  相似文献   
24.
Optics and Spectroscopy - The emission (700–1000 nm) and absorption (200–800 nm) spectra of LiF and LiF:ОН crystals irradiated in a reactor and by UV light, as well as...  相似文献   
25.
Although great progress has been made in the advancement of nanozymes, most of the studies focus on mimicking peroxidase, oxidase, and catalase, while relatively few studies are used to mimic laccase. However, the use of nanomaterials to mimic laccase activity will have great potential in environmental and industrial catalysis. Herein, Cu/CuO-graphene foam with laccase-like activity was designed for the identification of phenolic compounds and the detection of epinephrine. In a typical experiment, the formation mechanism of Cu/CuO-graphene foam was investigated during the pyrolysis process by thermogravimetric-mass spectrometry. As a laccase mimic, Cu/CuO-graphene foam exhibited excellent catalytic activity with a Michaelis-Menten constant and a maximum initial velocity of 0.17 mmol/L and 0.012 mmol∙L-1∙s-1, respectively. Based on this principle, Cu/CuO-graphene foam nanozyme could differentially catalyze phenolic compounds and 4-aminoantipyrine for simultaneous identification of phenolic compounds. Furthermore, a colorimetric sensing platform was fabricated for the quantitative determination of epinephrine, showing linear responses to epinephrine in the range of 3 mg/mL to 20 mg/mL with the detection limit of 0.2 mg/mL. The proposed Cu/CuO-graphene foam nanozyme could be applied for the identification of phenolic compounds and the detection of epinephrine, showing great potential applications for environmental monitoring, biomedical sensing, and food detection fields.  相似文献   
26.
冯谦  张英杰  董鹏  李雪 《人工晶体学报》2019,48(12):2278-2283
通过喷雾干燥-固相煅烧法制备了球形钛酸钾.不同于传统喷雾干燥工艺采用固态钛源进行制备,本文采用的前驱体是钾盐,分散剂和钛酸四丁酯制备出的硝酸氧钛的混合溶液.由于制备方法中前驱体为原子级均匀分布,化学计量比可精确控制,制备出的材料颗粒细小,粒径、成分分布均匀,电化学性能优异.同时研究了不同钾钛摩尔比以及煅烧温度对球形钛酸钾的形貌和成分的影响,并研究了其作为钾离子电池电极材料的电化学性能.结果表明,钾钛摩尔比为0.816,煅烧温度为 800 ℃时钛酸钾的电化学性能最好,首圈容量 185.1 mAh/g,30 圈后容量为173.9 mAh/g,循环100圈后还有169.7 mAh/g的容量.  相似文献   
27.
Russian Journal of Organic Chemistry - Methyl (Z)-3-[(2R,3R,4S,5S)-5-(2-methoxy-2-oxoethyl)-3,4-(isopropylidenedioxy)tetrahydrofuran-2-yl]-prop-2-enoate was synthesized, and its intramolecular...  相似文献   
28.
Journal of Thermal Analysis and Calorimetry - A complete analysis of the thermal process about melamine was presented, in which different methods were applied to determine the characteristic of the...  相似文献   
29.
30.
Qian  Yu  Zhang  Chi  Zhang  Gang  Liu  Fei  Zheng  Zhigang 《Nonlinear dynamics》2020,99(2):1415-1431
Nonlinear Dynamics - The problem of self-sustained oscillations in excitable complex networks is the central issue under investigation, among which the exploration of the key factors in determining...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号